KIT | KIT-Bibliothek | Impressum | Datenschutz

Sizing of Hybrid Energy Storage Systems using Recurring Daily Patterns

Karrari, Shahab 1; Ludwig, Nicole; Carne, Giovanni ORCID iD icon 1; Noe, Mathias ORCID iD icon 1
1 Institut für Technische Physik (ITEP), Karlsruher Institut für Technologie (KIT)

Abstract:

A hybrid Energy Storage Systems (ESS) consists of two or more energy storage technologies, with different power and energy characteristics. Using a hybrid ESS, both high-frequency and low-frequency power variations can be addressed at the same time. For an accurate sizing of a hybrid ESS, the use of high-resolution data is required. However, high-resolution data over long periods leads to large data sets, which are difficult to handle. In this paper, an improved motif discovery algorithm is introduced to find the most recurring daily consumption patterns within the time series of interest. The most recurring pattern is selected as the representative of the time series for sizing the hybrid ESS. Next, a simple optimization framework is proposed for selecting the cut-off frequency of a low-pass filter, used for allocating the power to different storage technologies. Finally, the proposed sizing approach is applied for sizing a hybrid battery-flywheel ESS at four different low voltage distribution grids in southern Germany using real measurement data. It is demonstrated that a hybrid ESS, with the characteristics derived from the most recurring patterns only, can effectively provide their intended grid services for most of the days during the whole period of the time series.


Verlagsausgabe §
DOI: 10.5445/IR/1000143553/pub
Veröffentlicht am 23.08.2022
Postprint §
DOI: 10.5445/IR/1000143553
Veröffentlicht am 28.03.2022
Originalveröffentlichung
DOI: 10.1109/TSG.2022.3156860
Scopus
Zitationen: 13
Web of Science
Zitationen: 5
Dimensions
Zitationen: 15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Physik (ITEP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1949-3053, 1949-3061
KITopen-ID: 1000143553
HGF-Programm 37.12.03 (POF IV, LK 01) Smart Areas and Research Platforms
Erschienen in IEEE Transactions on Smart Grid
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 13
Heft 4
Seiten 3290-3300
Projektinformation HGF, HGF IVF2016 TALENT, VH-NG-1613
Vorab online veröffentlicht am 04.03.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page