KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse medium scattering for a nonlinear Helmholtz equation

Griesmaier, Roland; Knöller, Marvin; Mandel, Rainer

Abstract:

We discuss a time-harmonic inverse scattering problem for a nonlinear Helmholtz equation with compactly supported inhomogeneous scattering objects that are described by a nonlinear refractive index in unbounded free space. Assuming the knowledge of a nonlinear far field operator, which maps Herglotz incident waves to the far field patterns of corresponding solutions of the nonlinear scattering problem, we show that the nonlinear index of refraction is uniquely determined. We also generalize two reconstruction methods, a factorization method and a monotonicity method, to recover the support of such nonlinear scattering objects. Numerical results illustrate our theoretical findings.


Volltext §
DOI: 10.5445/IR/1000143581
Veröffentlicht am 10.03.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000143581
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2022/17
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter inverse scattering, nonlinear Helmholtz equation, uniqueness, factorization method, monotonicity method
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page