KIT | KIT-Bibliothek | Impressum | Datenschutz

Analyzing and Predicting Verification of Data-Aware Process Models – a Case Study with Spectrum Auctions

Ordoni, E. 1; Bach, J. ORCID iD icon 1; Fleck, A. ORCID iD icon 2
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
2 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract:

Verification techniques play an essential role in detecting undesirable behaviors in many applications like spectrum auctions. By verifying an auction design, one can detect the least favorable outcomes, e.g., the lowest revenue of an auctioneer. However, verification may be infeasible in practice, given the vast size of the state space on the one hand and the large number of properties to be verified on the other hand. To overcome this challenge, we leverage machine-learning techniques. In particular, we create a dataset by verifying properties of a spectrum auction first. Second, we use this dataset to analyze and predict outcomes of the auction and characteristics of the verification procedure. To evaluate the usefulness of machine learning in the given scenario, we consider prediction quality and feature importance. In our experiments, we observe that prediction models can capture relationships in our dataset well, though one needs to be careful to obtain a representative and sufficiently large training dataset. While the focus of this article is on a specific verification scenario, our analysis approach is general and can be adapted to other domains.


Verlagsausgabe §
DOI: 10.5445/IR/1000143777
Veröffentlicht am 01.08.2022
Originalveröffentlichung
DOI: 10.1109/ACCESS.2022.3154445
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000143777
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Seiten 31699-31713
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 24.02.2022
Externe Relationen Forschungsdaten/Software
Schlagwörter formal verification, machine learning, model checking, spectrum auctions
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page