KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainability of deep neural networks for MRI analysis of brain tumors

Zeineldin, R. A. ORCID iD icon 1; Karar, M. E.; Elshaer, Z.; Coburger, J.; Wirtz, C. R.; Burgert, O.; Mathis-Ullrich, F. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Purpose
Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction before applying these methods in clinical practice.
Methods
In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to help make deep learning models transparent.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can provide information flow visualization on internal layers of a segmentation CNN.
Conclusion
Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine of cancer patients. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000146071
Veröffentlicht am 12.05.2022
Originalveröffentlichung
DOI: 10.1007/s11548-022-02619-x
Scopus
Zitationen: 55
Web of Science
Zitationen: 31
Dimensions
Zitationen: 62
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1861-6410, 1861-6429
KITopen-ID: 1000146071
Erschienen in International Journal of Computer Assisted Radiology and Surgery
Verlag Springer-Verlag
Band 17
Heft 9
Seiten 1673–1683
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page