KIT | KIT-Bibliothek | Impressum | Datenschutz

Superaccurate effective elastic moduli via postprocessing in computational homogenization

Schneider, Matti 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

With the complexity of modern microstructured materials, computational homogenization methods have been shown to provide accurate estimates of their effective mechanical properties, reducing the involved experimental effort considerably. After solving the balance of linear momentum on the microscale, the effective stress is traditionally computed through volume averaging the microscopic stress field. In the work at hand, we exploit the idea that averaging the elastic energy may lead to much more accurate effective elastic properties than through stress averaging. We show that the accuracy is roughly doubled when using energy equivalence instead of strain equivalence for compatible iterates of iterative schemes. Thus, to achieve a prescribed accuracy, the necessary effort is roughly reduced by a factor of two. In addition to the theory, we provide a handbook for utilizing these ideas for modern solvers prominent in FFT-based micromechanics. We demonstrate the superiority of energy averaging through computational examples, discuss the peculiarities of polarization methods with their non-compatible iterates and expose a superaccuracy phenomenon occurring for the linear conjugate gradient method.


Verlagsausgabe §
DOI: 10.5445/IR/1000146954
Originalveröffentlichung
DOI: 10.1002/nme.7002
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000146954
Erschienen in International Journal for Numerical Methods in Engineering
Verlag John Wiley and Sons
Band 123
Heft 17
Seiten 4119-4135
Vorab online veröffentlicht am 23.05.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page