KIT | KIT-Bibliothek | Impressum | Datenschutz

Karst spring discharge modeling based on deep learning using spatially distributed input data

Wunsch, Andreas ORCID iD icon 1; Liesch, Tanja ORCID iD icon 1; Cinkus, Guillaume; Ravbar, Nataša; Chen, Zhao; Mazzilli, Naomi; Jourde, Hervé; Goldscheider, Nico 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

Despite many existing approaches, modeling karst water resources remains challenging as conventional approaches usually heavily rely on distinct system knowledge. Artificial neural networks (ANNs), however, require only little prior knowledge to automatically establish an input–output relationship. For ANN modeling in karst, the temporal and spatial data availability is often an important constraint, as usually no or few climate stations are located within or near karst spring catchments. Hence, spatial coverage is often not satisfactory and can result in substantial uncertainties about the true conditions in the catchment, leading to lower model performance. To overcome these problems, we apply convolutional neural networks (CNNs) to simulate karst spring discharge and to directly learn from spatially distributed climate input data (combined 2D–1D CNNs). We investigate three karst spring catchments in the Alpine and Mediterranean region with different meteorological–hydrological characteristics and hydrodynamic system properties. We compare the proposed approach both to existing modeling studies in these regions and to our own 1D CNN models that are conventionally trained with climate station input data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000147693
Veröffentlicht am 07.06.2022
Originalveröffentlichung
DOI: 10.5194/hess-26-2405-2022
Scopus
Zitationen: 31
Web of Science
Zitationen: 26
Dimensions
Zitationen: 32
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1027-5606, 1607-7938
KITopen-ID: 1000147693
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 26
Heft 9
Seiten 2405–2430
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 09.05.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page