KIT | KIT-Bibliothek | Impressum | Datenschutz

On leapfrog-Chebyshev schemes for second-order differential equations

Carle, Constantin 1,2
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Sonderforschungsbereich 1173 (SFB 1173), Karlsruher Institut für Technologie (KIT)

Abstract:

In this thesis the efficient time integration of semilinear second-order ordinary differential equations is investigated. Based on the leapfrog (Störmer, Verlet) scheme a new class of explicit two-step schemes is constructed by utilizing Chebyshev polynomials. For deriving rigorous error bounds of these leapfrog-Chebyshev (LFC) schemes a more general class of two-step schemes is introduced. Precise conditions are stated for this general class guaranteeing stability as well as second-order convergence in time. In addition, the influence of the starting value is analyzed in detail. Furthermore, by combining the leapfrog scheme with this general class of schemes a class of multirate two-step methods is constructed. Sufficient conditions for the stability of these schemes are derived as well as error bounds showing the second-order convergence in time. For both the LFC schemes and the multirate schemes if equipped with the LFC schemes it is shown that in specific situations they outperform the leapfrog scheme. Numerical examples are provided to illustrate the theoretical results.


Volltext §
DOI: 10.5445/IR/1000147725
Veröffentlicht am 23.06.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Hochschulschrift
Publikationsdatum 23.06.2022
Sprache Englisch
Identifikator KITopen-ID: 1000147725
Verlag Karlsruher Institut für Technologie (KIT)
Umfang iv, 143 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 15.12.2021
Schlagwörter time integration, leapfrog (Störmer, Verlet) scheme, Chebyshev polynomials, leapfrog-Chebyshev schemes, multirate schemes, two-step schemes, stability analysis, error analysis, second-order semilinear odes, Hamiltonian systems, wave equation
Relationen in KITopen
Referent/Betreuer Hochbruck, Marlis
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page