KIT | KIT-Bibliothek | Impressum | Datenschutz

A Simple Pyramid Vision Transformer for Human Pose Estimation in Crowds

Cormier, Mickael

Abstract (englisch):

Multi-person Pose Estimation is essential for several computer vision tasks related to motion analysis and anomaly detection. The impressive and continual progress in this field leads to application in uncooperative real-world scenarios such as detecting anomalous and dangerous behavior from individuals or groups within dense crowds in public places. However, reliably detecting poses within crowds in surveillance footage remains a very challenging task, due to diverse occlusions, illumination changes and long processing time. In this work, we present a simple Pyramid Vision Transformer for Human Pose Estimation achieving competitive results on the COCO Keypoints 2017 [16] while requiring significantly less parameters and thus computation time. A significant improvement is reported over the baselines on the more crowded OCHuman [33], PoseTrack 2018 [2], and CrowdPose [14] datasets.


Verlagsausgabe §
DOI: 10.5445/IR/1000148320
Veröffentlicht am 11.07.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1171-7
ISSN: 1863-6489
KITopen-ID: 1000148320
Erschienen in Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory
Veranstaltung Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory (2021), Karlsruhe, Deutschland, 02.07.2021 – 06.07.2021
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 33-51
Serie Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ; 54
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page