KIT | KIT-Bibliothek | Impressum | Datenschutz

Weak Coloring Numbers of Intersection Graphs

Dvorák, Z. ; Pekárek, J. ; Ueckerdt, Torsten 1; Yuditsky, Y.
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for a positive integer k, we seek a vertex ordering such that every vertex can (weakly respectively strongly) reach in k steps only few vertices that precede it in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in structural and algorithmic graph theory. Recently, Dvořák, McCarty, and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in ℝ^d, such as homothets of a compact convex object, or comparable axis-aligned boxes.
In this paper, we prove upper and lower bounds for the k-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in k, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).


Verlagsausgabe §
DOI: 10.5445/IR/1000149132
Veröffentlicht am 28.07.2022
Originalveröffentlichung
DOI: 10.4230/LIPIcs.SoCG.2022.39
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-9597722-7-3
ISSN: 1868-8969
KITopen-ID: 1000149132
Erschienen in 38th International Symposium on Computational Geometry (SoCG 2022). Ed.: X. Goaoc
Veranstaltung 38th International Symposium on Computational Geometry (SoCG 2022), Berlin, Deutschland, 07.06.2022 – 10.06.2022
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten Art.-Nr.: 39
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 224
Schlagwörter geometric intersection graphs, weak and strong coloring numbers
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page