Point and interval estimation of decomposition error in discrete-time open tandem queues
Jacobi, Christoph 1; Furmans, Kai 1 1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)
Abstract:
We analyze the approximation quality of the discrete-time decomposition approach, compared to simulation, and with respect to the expected value and the 95th-percentile of waiting time. For both performance measures, we use OLS regression models to compute point estimates, and quantile regression models to compute interval estimates of decomposition error. The ANOVA reveal major influencing factors on decomposition error while the regression models are demonstrated to provide accurate forecasts and precise confidence intervals for decomposition error.
Zugehörige Institution(en) am KIT
Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp
Zeitschriftenaufsatz
Publikationsjahr
2022
Sprache
Englisch
Identifikator
ISSN: 0167-6377
KITopen-ID: 1000149304
Erschienen in
Operations Research Letters
Verlag
Elsevier
Band
50
Heft
5
Seiten
529-535
Vorab online veröffentlicht am
29.07.2022
Schlagwörter
Decomposition, Tandem queue, Waiting time, Multiple linear regression, Quantile regression, ANOVA