KIT | KIT-Bibliothek | Impressum | Datenschutz

Training deep material networks to reproduce creep loading of short fiber-reinforced thermoplastics with an inelastically-informed strategy

Dey, Argha Protim; Welschinger, Fabian; Schneider, Matti 1; Gajek, Sebastian 1; Böhlke, Thomas ORCID iD icon 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep material networks (DMNs) are a recent multiscale technology which enable running concurrent multiscale simulations on industrial scale with the help of powerful surrogate models for the micromechanical problem. Classically, the parameters of the DMNs are identified based on linear elastic precomputations. Once the parameters are identified, DMNs may process inelastic material models and were shown to reproduce micromechanical full-field simulations with the original microstructure to high accuracy. The work at hand was motivated by creep loading of thermoplastic components with fiber reinforcement. In this context, multiple scales appear, both in space (due to the reinforcements) and in time (short- and long-term effects). We demonstrate by computational examples that the classical training strategy based on linear elastic precomputations is not guaranteed to produce DMNs whose long-term creep response accurately matches high-fidelity computations. As a remedy, we propose an inelastically informed early stopping strategy for the offline training of the DMNs. Moreover, we introduce a novel strategy based on a surrogate material model, which shares the principal nonlinear effects with the true model but is significantly less expensive to evaluate. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000149491
Veröffentlicht am 10.08.2022
Originalveröffentlichung
DOI: 10.1007/s00419-022-02213-2
Scopus
Zitationen: 10
Web of Science
Zitationen: 9
Dimensions
Zitationen: 12
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2022
Sprache Englisch
Identifikator ISSN: 0939-1533, 0020-1154, 1432-0681
KITopen-ID: 1000149491
Erschienen in Archive of Applied Mechanics
Verlag Springer
Band 92
Heft 9
Seiten 2733–2755
Vorab online veröffentlicht am 21.07.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page