KIT | KIT-Bibliothek | Impressum | Datenschutz

Microkinetic Analysis of the Oxygen Evolution Performance at Different Stages of Iridium Oxide Degradation

Geppert, Janis ORCID iD icon 1; Röse, Philipp ORCID iD icon 1; Czioska, Steffen 2; Escalera-López, Daniel; Boubnov, Alexey 2,3; Saraçi, Erisa 2,3; Cherevko, Serhiy; Grunwaldt, Jan-Dierk ORCID iD icon 2,3; Krewer, Ulrike ORCID iD icon 1
1 Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)
3 Institut für Katalyseforschung und -technologie (IKFT), Karlsruher Institut für Technologie (KIT)

Abstract:

The microkinetics of the electrocatalytic oxygen evolution reaction substantially determines the performance in proton-exchange membrane water electrolysis. State-of-the-art nanoparticulated rutile IrO$_{2}$ electrocatalysts present an excellent trade-off between activity and stability due to the efficient formation of intermediate surface species. To reveal and analyze the interaction of individual surface processes, a detailed dynamic microkinetic model approach is established and validated using cyclic voltammetry. We show that the interaction of three different processes, which are the adsorption of water, one potential-driven deprotonation step, and the detachment of oxygen, limits the overall reaction turnover. During the reaction, the active IrO$_{2}$ surface is covered mainly by *O, *OOH, and *OO adsorbed species with a share dependent on the applied potential and of 44, 28, and 20% at an overpotential of 350 mV, respectively. In contrast to state-of-the-art calculations of ideal catalyst surfaces, this novel model-based methodology allows for experimental identification of the microkinetics as well as thermodynamic energy values of real pristine and degraded nanoparticles. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000150027
Veröffentlicht am 25.08.2022
Originalveröffentlichung
DOI: 10.1021/jacs.2c03561
Scopus
Zitationen: 27
Web of Science
Zitationen: 24
Dimensions
Zitationen: 31
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1)
Institut für Katalyseforschung und -technologie (IKFT)
Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 27.07.2022
Sprache Englisch
Identifikator ISSN: 1520-5126, 0002-7863, 1943-2984
KITopen-ID: 1000150027
HGF-Programm 38.03.02 (POF IV, LK 01) Power-based Fuels and Chemicals
Erschienen in Journal of the American Chemical Society
Verlag American Chemical Society (ACS)
Band 144
Heft 29
Seiten 13205–13217
Vorab online veröffentlicht am 18.07.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page