KIT | KIT-Bibliothek | Impressum | Datenschutz

Annotation-efficient learning of surgical instrument activity in neurosurgery

Philipp, Markus 1; Alperovich, Anna; Lisogorov, Alexander; Gutt-Will, Marielena; Mathis, Andrea; Saur, Stefan; Raabe, Andreas; Mathis-Ullrich, Franziska 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning-based solutions rely heavily on the quality and quantity of the training data. In the medical domain, the main challenge is to acquire rich and diverse annotated datasets for training. We propose to decrease the annotation efforts and further diversify the dataset by introducing an annotation-efficient learning workflow. Instead of costly pixel-level annotation, we require only image-level labels as the remainder is covered by simulation. Thus, we obtain a large-scale dataset with realistic images and accurateground truth annotations. We use this dataset for theinstrument localization activity task together with a student-teacher approach. We demonstrate the benefits of our workflow compared to state-of-the-art methods in instrument localization that are trained only on clinical datasets, which are fully annotated by human experts.


Verlagsausgabe §
DOI: 10.5445/IR/1000150032
Veröffentlicht am 25.08.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.07.2022
Sprache Englisch
Identifikator ISSN: 2364-5504
KITopen-ID: 1000150032
Erschienen in Current Directions in Biomedical Engineering
Verlag De Gruyter
Band 8
Heft 1
Seiten 30–33
Schlagwörter Annotation-efficiency learning, neurosurgery, instrument localization, medical deep learning
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page