KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerical analysis for electromagnetic scattering from nonlinear boundary conditions

Nick, Jörg 1
1 Universität Stuttgart (Uni Stuttgart)

Abstract:

This work studies time-dependent electromagnetic scattering from obstacles whose interaction with the wave is fully determined by a nonlinear boundary condition. In particular, the boundary condition studied in this work enforces a power law type relation between the electric and magnetic field along the boundary. Based on time-dependent jump conditions of classical boundary operators, we derive a nonlinear system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. These fields can subsequently be computed at arbitrary points in the exterior domain by evaluating a time-dependent representation formula.
Fully discrete schemes are obtained by discretising the nonlinear system of boundary integral equations with Runge–Kutta based convolution quadrature in time and Raviart–Thomas boundary elements in space. Error bounds with explicitly stated convergence rates are proven, under the assumption of sufficient regularity of the exact solution. The error analysis is conducted through novel techniques based on time-discrete transmission problems and the use of a new discrete partial integration inequality. ... mehr


Volltext §
DOI: 10.5445/IR/1000150061
Veröffentlicht am 18.08.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 08.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000150061
Verlag KIT, Karlsruhe
Umfang 36 S.
Serie CRC 1173 Preprint ; 2022/37
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Forschungsdaten/Software
Siehe auch
Schlagwörter electromagnetic scattering, boundary integral equations, convolution quadrature, boundary element method
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page