KIT | KIT-Bibliothek | Impressum | Datenschutz

Cwikel’s bound reloaded

Hundertmark, Dirk 1,2; Kunstmann, Peer 1; Ried, Tobias; Vugalter, Semjon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften (BGU), Karlsruher Institut für Technologie (KIT)

Abstract:

There are several proofs by now for the famous Cwikel–Lieb–Rozenblum (CLR) bound, which is a semiclassical bound on the number of bound states for a Schrödinger operator, proven in the 1970s. Of the rather distinct proofs by Cwikel, Lieb, and Rozenblum, the one by Lieb gives the best constant, the one by Rozenblum does not seem to yield any reasonable estimate for the constants, and Cwikel’s proof is said to give a constant which is at least about 2 orders of magnitude off the truth. This situation did not change much during the last 40+ years. It turns out that this common belief, i.e, Cwikel’s approach yields bad constants, is not set in stone: We give a substantial refinement of Cwikel’s original approach which highlights a natural but overlooked connection of the CLR bound with bounds for maximal Fourier multipliers from harmonic analysis. Moreover, it gives an astonishingly good bound for the constant in the CLR inequality. Our proof is also quite flexible and leads to rather precise bounds for a large class of Schrödinger-type operators with generalized kinetic energies.


Verlagsausgabe §
DOI: 10.5445/IR/1000150620
Veröffentlicht am 20.02.2023
Originalveröffentlichung
DOI: 10.1007/s00222-022-01144-7
Scopus
Zitationen: 4
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0020-9910, 1432-1297
KITopen-ID: 1000150620
Erschienen in Inventiones mathematicae
Verlag Springer
Band 231
Seiten 111-167
Vorab online veröffentlicht am 05.09.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page