KIT | KIT-Bibliothek | Impressum | Datenschutz

Knowledge Extraction for Art History: the Case of Vasari’s The Lives of The Artists (1568)

Santini, Cristian; Tan, Mary Ann; Tietz, Tabea; Bruns, Oleksandra; Posthumus, Etienne; Sack, Harald

Abstract:

Knowledge Extraction (KE) techniques are used to convert unstructured information present in texts to Knowledge Graphs (KGs) which can be queried and explored. Despite their potential for cultural heritage domains, such as Art History, these techniques often encounter limitations if applied to domain-specific data. In this paper we present the main challenges that KE has to face on art-historical texts, by using as case study Giorgio Vasari’s The Lives of The Artists. This paper discusses the following NLP tasks for art-historical texts, namely entity recognition and linking, coreference resolution, time extraction, motif extraction and artwork extraction. Several strategies to annotate art-historical data for these tasks and evaluate NLP models are also proposed.


Verlagsausgabe §
DOI: 10.5445/IR/1000150720
Veröffentlicht am 21.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000150720
Erschienen in Proceedings of the Third Conference on Digital Curation Technologies (Qurator 2022) Berlin, Germany, Sept. 19th-23rd, 2022. Ed.: A. Paschke
Veranstaltung 3rd Conference on Digital Curation Technologies (Qurator 2022), Berlin, Deutschland, 19.09.2022 – 23.09.2022
Verlag CEUR-WS.org
Serie CEUR Workshop Proceedings ; 3234
Externe Relationen Abstract/Volltext
Schlagwörter Knowledge Extraction, Art History, Cultural Heritage, NLP
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page