KIT | KIT-Bibliothek | Impressum | Datenschutz

Higher-order finite element methods for the nonlinear Helmholtz equation

Verfürth, Barbara ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this work, we analyze the finite element method with arbitrary but fixed polynomial degree for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and (pre-asymptotic) error estimates of the finite element solution under a resolution condition between the wave number $k$, the mesh size $h$ and the polynomial degree p of the form “$k(kh)^p$ sufficiently small” and a so-called smallness of the data assumption. For the latter, we prove that the logarithmic dependence in $h$ from the case $p = 1$ in [H. Wu, J. Zou, SIAM J. Numer. Anal. 56(3): 1338-1359, 2018] can be removed for $p \ge 2$. We show convergence of two different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.


Volltext §
DOI: 10.5445/IR/1000150838
Veröffentlicht am 21.09.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 09.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000150838
Verlag KIT, Karlsruhe
Umfang 22 S.
Serie CRC 1173 Preprint ; 2022/47
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter nonlinear Helmholtz equation, higher-order finite elements, error analysis, high wave number
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page