KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-level stochastic collocation methods for parabolic and Schrödinger equations

Stein, Benny 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this thesis, we propose, analyse and implement numerical methods for time-dependent non-linear parabolic and Schrödinger-type equations with uncertain parameters. The discretisation of the parameter space which incorporates the uncertainty of the problem is performed via single- and multi-level collocation strategies. To deal with the possibly large dimension of the parameter space, sparse grid collocation techniques are used to alleviate the curse of dimensionality to a certain extent. We prove that the multi-level method is capable of reducing the overall computational costs significantly.

In the parabolic case, the time discretisation is performed via an implicit-explicit splitting strategy of order two which consists shortly speaking of a combination of an implicit trapezoidal rule for the stiff linear part and Heun's method for the non-linear part. In the Schrödinger case, time is discretised via the famous second-order Strang splitting method.

For both problem classes we review known error bounds for both discretizations and prove new error bounds for the time discretisations which take the regularity in the parameter space into account. ... mehr


Volltext §
DOI: 10.5445/IR/1000151254
Veröffentlicht am 17.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Hochschulschrift
Publikationsdatum 17.10.2022
Sprache Englisch
Identifikator KITopen-ID: 1000151254
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xi, 153 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 16.03.2022
Schlagwörter Uncertainty quantification, sparse grids, stochastic collocation method, multi-level method, implicit-explicit methods, splitting methods, Strang splitting, parabolic differential equations, predator-prey equations, Schrödinger equations
Referent/Betreuer Jahnke, Tobias
Wieners, Christian
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page