KIT | KIT-Bibliothek | Impressum | Datenschutz

Dislocation exhaustion and ultra-hardening of nanograined metals by phase transformation at grain boundaries

Wu, Shangshu; Kou, Zongde; Lai, Qingquan ; Lan, Si; Katnagallu, Shyam Swaroop 1; Hahn, H. 1; Hahn, Horst 1; Taheriniya, Shabnam; Wilde, Gerhard; Gleiter, Herbert
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The development of high-strength metals has driven the endeavor of pushing the limit of grain size (d) reduction according to the Hall-Petch law. But the continuous grain refinement is particularly challenging, raising also the problem of inverse Hall-Petch effect. Here, we show that the nanograined metals (NMs) with d of tens of nanometers could be strengthened to the level comparable to or even beyond that of the extremely-fine NMs (d ~ 5 nm) attributing to the dislocation exhaustion. We design the Fe-Ni NM with intergranular Ni enrichment. The results show triggering of structural transformation at grain boundaries (GBs) at low temperature, which consumes lattice dislocations significantly. Therefore, the plasticity in the dislocation-exhausted NMs is suggested to be dominated by the activation of GB dislocation sources, leading to the ultra-hardening effect. This approach demonstrates a new pathway to explore NMs with desired properties by tailoring phase transformations via GB physico-chemical engineering.


Verlagsausgabe §
DOI: 10.5445/IR/1000151469
Veröffentlicht am 24.10.2022
Originalveröffentlichung
DOI: 10.1038/s41467-022-33257-1
Scopus
Zitationen: 48
Web of Science
Zitationen: 40
Dimensions
Zitationen: 47
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000151469
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Nature Communications
Verlag Nature Research
Band 13
Heft 1
Seiten Art.-Nr.: 5468
Vorab online veröffentlicht am 17.09.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page