KIT | KIT-Bibliothek | Impressum | Datenschutz

Traveling waves for a quasilinear wave equation

Bruell, Gabriele; Idzik, Piotr; Reichel, Wolfgang 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider a 2+1 dimensional wave equation appearing in the context of polarized waves for the nonlinear Maxwell equations. The equation is quasilinear in the time derivatives and involves two material functions V and Γ. We prove the existence of traveling waves which are periodic in the direction of propagation and localized in the direction orthogonal to the propagation direction. Depending on the nature of the nonlinearity coefficient Γ we distinguish between two cases: (a) Γ ∈ L∞ being regular and (b) Γ = γδ0 being a multiple of the delta potential at zero. For both cases we use bifurcation theory to prove the existence of nontrivial smallamplitude solutions. One can regard our results as a persistence result which shows that guided modes known for linear wave-guide geometries survive in the presence of a nonlinear constitutive law. Our main theorems are derived under a set of conditions on the linear wave operator. They are subsidized by explicit examples for the coefficients V in front of the (linear) second time derivative for which our results hold.


Verlagsausgabe §
DOI: 10.5445/IR/1000151502
Veröffentlicht am 14.10.2022
Originalveröffentlichung
DOI: 10.1016/j.na.2022.113115
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 0362-546X
KITopen-ID: 1000151502
Erschienen in Nonlinear Analysis
Verlag Elsevier
Band 225
Seiten Art.-Nr.: 113115
Schlagwörter Nonlinear Maxwell equations; Quasilinear wave equation; Traveling wave; Bifurcation
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page