KIT | KIT-Bibliothek | Impressum | Datenschutz

On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning

Becker, Philipp 1; Neumann, Gerhard 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Improved state space models, such as Recurrent State Space Models (RSSMs), are a key factor behind recent advances in model-based reinforcement learning (RL).
Yet, despite their empirical success, many of the underlying design choices are not well understood.
We show that RSSMs use a suboptimal inference scheme and that models trained using this inference overestimate the aleatoric uncertainty of the ground truth system.
We find this overestimation implicitly regularizes RSSMs and allows them to succeed in model-based RL.
We postulate that this implicit regularization fulfills the same functionality as explicitly modeling epistemic uncertainty, which is crucial for many other model-based RL approaches.
Yet, overestimating aleatoric uncertainty can also impair performance in cases where accurately estimating it matters, e.g., when we have to deal with occlusions, missing observations, or fusing sensor modalities at different frequencies.
Moreover, the implicit regularization is a side-effect of the inference scheme and not the result of a rigorous, principled formulation, which renders analyzing or improving RSSMs difficult.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000151598
Veröffentlicht am 19.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2022
Sprache Englisch
Identifikator KITopen-ID: 1000151598
Erschienen in Transactions on Machine Learning Research
Heft 10
Externe Relationen Abstract/Volltext
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page