KIT | KIT-Bibliothek | Impressum | Datenschutz

A Realism Metric for Generated LiDAR Point Clouds

Triess, Larissa T. ORCID iD icon 1; Rist, Christoph B.; Peter, David; Zöllner, J. Marius 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

A considerable amount of research is concerned with the generation of realistic sensor data. LiDAR point clouds are generated by complex simulations or learned generative models. The generated data is usually exploited to enable or improve downstream perception algorithms. Two major questions arise from these procedures: First, how to evaluate the realism of the generated data? Second, does more realistic data also lead to better perception performance? This paper addresses both questions and presents a novel metric to quantify the realism of LiDAR point clouds. Relevant features are learned from real-world and synthetic point clouds by training on a proxy classification task. In a series of experiments, we demonstrate the application of our metric to determine the realism of generated LiDAR data and compare the realism estimation of our metric to the performance of a segmentation model. We confirm that our metric provides an indication for the downstream segmentation performance.


Verlagsausgabe §
DOI: 10.5445/IR/1000151642
Veröffentlicht am 20.10.2022
Originalveröffentlichung
DOI: 10.1007/s11263-022-01676-8
Scopus
Zitationen: 5
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0920-5691, 1573-1405
KITopen-ID: 1000151642
Erschienen in International Journal of Computer Vision
Verlag Springer
Band 130
Seiten 2962–2979
Vorab online veröffentlicht am 22.09.2022
Schlagwörter Metric, Point cloud, LiDAR, Realism, Adversarial learning, Local features, Semantic segmentation
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page