KIT | KIT-Bibliothek | Impressum | Datenschutz

A Realism Metric for Generated LiDAR Point Clouds

Triess, Larissa T. ORCID iD icon; Rist, Christoph B.; Peter, David; Zöllner, J. Marius 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

A considerable amount of research is concerned with the generation of realistic sensor data.
LiDAR point clouds are generated by complex simulations or learned generative models. The
generated data is usually exploited to enable or improve downstream perception algorithms.
Two major questions arise from these procedures: First, how to evaluate the realism of the
generated data? Second, does more realistic data also lead to better perception performance?
This paper addresses both questions and presents a novel metric to quantify the realism of
LiDAR point clouds. Relevant features are learned from real-world and synthetic point clouds
by training on a proxy classification task. In a series of experiments, we demonstrate the
application of our metric to determine the realism of generated LiDAR data and compare
the realism estimation of our metric to the performance of a segmentation model. We con-
firm that our metric provides an indication for the downstream segmentation performance.


Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 31.08.2022
Sprache Englisch
Identifikator KITopen-ID: 1000151643
Umfang 23 S.
Schlagwörter metric, point cloud, LiDAR, realism, adversarial learning, local features, semantic segmentation
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page