KIT | KIT-Bibliothek | Impressum | Datenschutz

Feasibility of Inconspicuous GAN-generated Adversarial Patches against Object Detection

Pavlitskaya, S. ; Codău, B.-M. 1; Zöllner, J. M. 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Standard approaches for adversarial patch generation lead to noisy conspicuous patterns, which are easily recognizable by humans. Recent research has proposed several approaches to generate naturalistic patches using generative adversarial networks (GANs), yet only a few of them were evaluated on the object detection use case. Moreover, the state of the art mostly focuses on suppressing a single large bounding box in input by overlapping it with the patch directly. Suppressing objects near the patch is a different, more complex task. In this work, we have evaluated the existing approaches to generate inconspicuous patches. We have adapted methods, originally developed for different computer vision tasks, to the object detection use case with YOLOv3 and the COCO dataset. We have evaluated two approaches to generate naturalistic patches: by incorporating patch generation into the GAN training process and by using the pretrained GAN. For both cases, we have assessed a trade-off between performance and naturalistic patch appearance. Our experiments have shown, that using a pre-trained GAN helps to gain realistic-looking patches while preserving the performance similar to conventional adversarial patches.


Verlagsausgabe §
DOI: 10.5445/IR/1000151680
Veröffentlicht am 21.10.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000151680
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Erschienen in Proceedings of the Workshop on Artificial Intelligence Safety 2022 (AISafety 2022) co-located with the Thirty-First International Joint Conference on Artificial Intelligence and the Twenty-Fifth European Conference on Artificial Intelligence (IJCAI-ECAI-2022) Ed.: G. Pedroza
Veranstaltung Workshop on Artificial Intelligence Safety (AISafety 2022), Wien, Österreich, 24.07.2022 – 25.07.2022
Verlag CEUR-WS.org
Serie CEUR Workshop Proceedings ; 3215
Externe Relationen Abstract/Volltext
Schlagwörter adversarial attacks, object detection, GANs
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page