KIT | KIT-Bibliothek | Impressum | Datenschutz

3D Refuse-derived Fuel Particle Tracking-by-Detection Using a Plenoptic Camera System

Zhang, Miao ORCID iD icon 1; Vogelbacher, Markus ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 2; Aleksandrov, Krasimir 3; Gehrmann, Hans-Joachim 3; Matthes, Jorg 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Technische Chemie (ITC), Karlsruher Institut für Technologie (KIT)

Abstract:

Multiple particle tracking-by-detection is a widely investigated issue in image processing. The paper presents approaches to detecting and tracking various refuse-derived fuel particles in a industrial environment using a plenoptic camera system, which is able to yield 2D gray value information and 3D point clouds with noticeable fluctuations. The presented approaches, including an innovative combined detection method and a post-processing framework for multiple particle tracking, aim at making the most of the acquired 2D and 3D information to deal with the fluctuations of the measuring system. The proposed novel detection method fuses the captured 2D gray value information and 3D point clouds, which is superior to applying single information. Subsequently, the particles are tracked by the linear Kalman filter and 2.5D global nearest neighbor (GNN) and joint probabilistic data association (JPDA) approach, respectively. As a result of several inaccurate detection results caused by the measuring system, the initial tracking results contain faulty and incomplete tracklets that entail a post-processing process. The developed post-processing approach based merely on particle motion similarity benefits a precise tracking performance by eliminating faulty tracklets, deleting outliers, connecting tracklets, and fusing trajectories. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000152316
Veröffentlicht am 07.11.2022
Originalveröffentlichung
DOI: 10.1109/TIM.2022.3217858
Scopus
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Technische Chemie (ITC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0018-9456, 1557-9662
KITopen-ID: 1000152316
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Weitere HGF-Programme 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Erschienen in IEEE Transactions on Instrumentation and Measurement
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 71
Seiten Art.Nr. 5024815
Projektinformation FLUFF (BMWK, 20410 N/3)
Vorab online veröffentlicht am 28.10.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page