KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning an Artificial Language for Knowledge-Sharing in Multilingual Translation

Liu, Danni ORCID iD icon 1; Niehues, Jan ORCID iD icon 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The cornerstone of multilingual neural translation is shared representations across languages. Given the theoretically infinite representation power of neural networks, semantically identical sentences are likely represented differently. While representing sentences in the continuous latent space ensures expressiveness, it introduces the risk of capturing of irrelevant features which hinders the learning of a common representation. In this work, we discretize the encoder output latent space of multilingual models by assigning encoder states to entries in a codebook, which in effect represents source sentences in a new artificial language. This discretization process not only offers a new way to interpret the otherwise black-box model representations, but, more importantly, gives potential for increasing robustness in unseen testing conditions. We validate our approach on large-scale experiments with realistic data volumes and domains. When tested in zero-shot conditions, our approach is competitive with two strong alternatives from the literature. We also use the learned artificial language to analyze model behavior, and discover that using a similar bridge language increases knowledge-sharing among the remaining languages.


Preprint §
DOI: 10.5445/IR/1000152497
Veröffentlicht am 23.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 07.12.2022
Sprache Englisch
Identifikator KITopen-ID: 1000152497
Erschienen in 7th Conference on Machine Translation (WMT 2022), Abu Dhabi, 7 -8. December 2022
Veranstaltung 7th Conference on Machine Translation (WMT 2022), Abu Dhabi, Vereinigte Arabische Emirate, 07.12.2022 – 08.12.2022
Verlag Association for Computational Linguistics (ACL)
Bemerkung zur Veröffentlichung in press
Nachgewiesen in arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page