KIT | KIT-Bibliothek | Impressum | Datenschutz

The Best of Two Worlds – Using Recent Advances from Uplift Modeling and Heterogeneous Treatment Effects to Optimize Targeting Policies

Rößler, Jannik; Guse, Richard ORCID iD icon 1; Schoder, Detlef
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

The design of targeting policies is fundamental to address a variety of practical problems across a broad spectrum of domains from e-commerce to politics and medicine. Recently, researchers and practitioners have begun to predict individual treatment effects to optimize targeting policies. Although different research streams, that is, uplift modeling and heterogeneous treatment effect propose numerous methods to predict individual treatment effects, current approaches suffer from various practical challenges, such as weak model performance and a lack of reliability. In this study, we propose a new, tree- based, algorithm that combines recent advances from both research streams and demonstrate how its use can improve predicting the individual treatment effect. We benchmark our method empirically against state-of-the-art strategies and show that the proposed algorithm achieves excellent results. We demonstrate that our approach performs particularly well when targeting few customers, which is of paramount interest when designing targeting policies in a marketing context.


Verlagsausgabe §
DOI: 10.5445/IR/1000152558
Veröffentlicht am 14.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000152558
Erschienen in Proceedings of the 43rd International Conference on Information Systems (ICIS), Association for Information Systems (AIS)
Veranstaltung 43rd International Conference on Information Systems (ICIS 2022), Kopenhagen, Dänemark, 09.12.2022 – 14.12.2022
Vorab online veröffentlicht am 10.11.2022
Externe Relationen Abstract/Volltext
Schlagwörter Causal inference, individual treatment effects, uplift modeling, heterogeneous treatment effects, targeting policies
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page