KIT | KIT-Bibliothek | Impressum | Datenschutz

Breather solutions for a semilinear Klein–Gordon equation on a periodic metric graph

Maier, Daniela 1; Reichel, Wolfgang 1; Schneider, Guido 2
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)
2 Universität Stuttgart (Uni Stuttgart)

Abstract:

We consider the nonlinear Klein-Gordon equation
$$ \partial_t^2 u(x,t) - \partial_x^2 u(x,t) + \alpha u(x,t) = \pm |u(x,t)|^{p-1}u(x,t) $$
on a periodic metric graph (necklace graph) for $p > 1$ with Kirchhoff conditions at the vertices. Under suitable assumptions on the frequency we prove the existence and regularity of infinitely many spatially localized time-periodic solutions (breathers) by variational methods. We compare our results with previous results obtained via spatial dynamics and center manifold techniques. Moreover, we deduce regularity properties of the solutions and show that they are weak solutions of the corresponding initial value problem. Our approach relies on the existence of critical points for indefinite functionals, the concentration compactness principle, and the proper set-up of a functional analytic framework. Compared to earlier work for breathers using variational techniques, a major improvement of embedding properties has been achieved. This allows in particular to avoid all restrictions on the exponent $p > 1$ and to achieve higher regularity.


Volltext §
DOI: 10.5445/IR/1000152784
Veröffentlicht am 18.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000152784
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 34 S.
Serie CRC 1173 Preprint ; 2022/60
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter semilinear Klein-Gordon equation, breather solutions, time-periodic, variational methods, metric graph
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page