KIT | KIT-Bibliothek | Impressum | Datenschutz

Breather solutions for a semilinear Klein-Gordon equation on a periodic metric graph

Maier, Daniela 1; Reichel, Wolfgang 1; Schneider, Guido
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the nonlinear Klein-Gordon equation
$$ \partial_t^2 u(x,t) - \partial_x^2 u(x,t) + \alpha u(x,t) = \pm |u(x,t)|^{p-1}u(x,t) $$
on a periodic metric graph (necklace graph) for $p > 1$ with Kirchhoff conditions at the vertices. Under suitable assumptions on the frequency we prove the existence and regularity of infinitely many spatially localized time-periodic solutions (breathers) by variational methods. We compare our results with previous results obtained via spatial dynamics and center manifold techniques. Moreover, we deduce regularity properties of the solutions and show that they are weak solutions of the corresponding initial value problem. Our approach relies on the existence of critical points for indefinite functionals, the concentration compactness principle, and the proper set-up of a functional analytic framework. Compared to earlier work for breathers using variational techniques, a major improvement of embedding properties has been achieved. This allows in particular to avoid all restrictions on the exponent $p > 1$ and to achieve higher regularity.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 0022-247X
KITopen-ID: 1000160582
Erschienen in Journal of Mathematical Analysis and Applications
Verlag Elsevier
Band 528
Heft 2
Seiten Art.-Nr.: 127520
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page