KIT | KIT-Bibliothek | Impressum | Datenschutz

Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings

Munoz-Banon, Miguel Angel; Pauls, Jan-Hendrik 1; Hu, Haohao 1; Stiller, Christoph 1; Candelas, Francisco A.; Torres, Fernando
1 Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT), Karlsruher Institut für Technologie (KIT)

Abstract:

Localization in aerial imagery-based maps offers many advantages, such as global consistency, geo-referenced maps, and the availability of publicly accessible data. However, the landmarks that can be observed from both aerial imagery and on-board sensors is limited. This leads to ambiguities or aliasing during the data association.
Building upon a highly informative representation (that allows efficient data association), this paper presents a complete pipeline for resolving these ambiguities. Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements. Additionally, to smooth the final result, we adjust the information matrix for the associated data as a function of the relative transform produced by the data association process.
We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany. We compare state-of-the-art outlier mitigation methods with our self-tuning approach, demonstrating a considerable improvement, especially for outer-urban scenarios.


Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000152870
Umfang 8 S.
Vorab online veröffentlicht am 28.07.2022
Schlagwörter autonomous vehicle navigation, localization
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page