KIT | KIT-Bibliothek | Impressum | Datenschutz

Analysis of a dimension splitting scheme for Maxwell equations with low regularity in heterogeneous media

Zerulla, Konstantin ORCID iD icon 1,2
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

We analyze a dimension splitting scheme for the time integration of linear Maxwell equations in a heterogeneous cuboid. The domain contains several homogeneous subcuboids and serves as a model for a rectangular embedded waveguide. Due to discontinuities of the material parameters and irregular initial data, the solution of the Maxwell system has regularity below H$^1$. The splitting scheme is adapted to the arising singularities and is shown to converge with order one in L$^2$. The error result only imposes assumptions on the model parameters and the initial data, but not on the unknown solution. To achieve this result, the regularity of the Maxwell system is analyzed in detail, giving rise to sharp explicit regularity statements. In particular, the regularity parameters are given in explicit terms of the largest jump of the material parameters. The analysis is based on semigroup theory, interpolation theory, and regularity analysis for elliptic transmission problems.


Verlagsausgabe §
DOI: 10.5445/IR/1000152990
Veröffentlicht am 22.11.2022
Originalveröffentlichung
DOI: 10.1007/s00028-022-00850-2
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 1424-3199, 1424-3202
KITopen-ID: 1000152990
Erschienen in Journal of Evolution Equations
Verlag Springer
Band 22
Heft 4
Seiten Art.-Nr.: 90
Vorab online veröffentlicht am 09.11.2022
Schlagwörter Maxwell equations, Heterogeneous media, Splitting method, Error bound, Regularity analysis, Elliptic transmission problem, 35Q61, 47D06, 65M15, 35J05, 65J08
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page