KIT | KIT-Bibliothek | Impressum | Datenschutz

Validity of the Whitham approximation for a complex cubic Klein–Gordon equation

Hofbauer, Sarah 1; Liao, Xian 2; Schneider, Guido 1
1 Universität Stuttgart (Uni Stuttgart)
2 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

The complex cubic Klein-Gordon (ccKG) equation possesses a family of periodic traveling wave solutions. Whitham’s modulation equations (WME) can be derived by a multiple scaling perturbation analysis in order to describe slow modulations in time and space of these traveling wave solutions. We prove estimates between true solutions of the ccKG equation and their associated WME approximation. The bounds are obtained in Gevrey spaces and hold independently of the spectral stability of the underlying traveling wave solutions. The proof is based on a suitable choice of variables, Cauchy-Kovalevskaya theory, infinitely many near identity changes of variables, and energy estimates in Gevrey spaces. The analysis for the ccKG equation is more complicated than the analysis for the nonlinear Schrödinger (NLS) equation which has been handled in the existing literature, due to additional curves of eigenvalues leading to an additional oscillatory behavior.


Volltext §
DOI: 10.5445/IR/1000153104
Veröffentlicht am 25.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Universität Stuttgart (Uni Stuttgart)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000153104
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 48 S.
Serie CRC Preprint 1173 ; 2022/64
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page