KIT | KIT-Bibliothek | Impressum | Datenschutz

Scattering of the three-dimensional cubic nonlinear Schrödinger equation with partial harmonic potentials

Cheng, Xing; Guo, Chang-Yu; Guo, Zihua; Liao, Xian 1; Shen, Jia
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrödinger equation (NLS) with partial harmonic potential
$\begin{equation}
\left\{\begin{array}{l}
i\partial_tu + \left(\Delta_{\mathbb{R}^3}-x^2\right)u = |u|^2u, \\
u|_{t=0} = u_0 \\
\end{array}\right. \tag{NLS}
\end{equation}$
Out main result shows that the solution $u$ scatters for any given initial data $u_0$ with finite mass and energy.
The main new ingredient in our approach is to approxmate (NLS) in the large-scale case by a relevant dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the new (DCR) system is greatly inspired by the fundamental works of Dodson [29, 31, 32] in his study of scattering for the mass-critical nonlinear Schrödinger equation. The analysis of (DCR) system allows us to utilize the additional regularity of the smooth nonlinear profile so that the celebrated concentration-compactness/rigidity argument of Kenig and Merle [61,62] applies.


Volltext §
DOI: 10.5445/IR/1000153239
Veröffentlicht am 01.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000153239
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 71 S.
Serie CRC 1173 Preprint ; 2022/67
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Schrödinger equation, scattering, partial harmonic potentials, dispersive continuous resonant system, profile decomposition
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page