KIT | KIT-Bibliothek | Impressum | Datenschutz

Predictive battery thermal management using quantile convolutional neural networks

Billert, Andreas M. 1; Erschen, Stefan; Frey, Michael ORCID iD icon 1; Gauterin, Frank ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

An improvement in energy efficiency of Battery Thermal Management Systems (BTMS) can increase range and reduce well-to-wheel emissions of Battery Electric Vehicles (BEV). In this work, the potential of a predictive BTMS using Quantile Convolutional Neural Networks (QCNN) was examined. The QCNN provided quantile predictions of battery temperature based on input data from both previous and following drive segments. The predictive control was designed to choose battery cooling thresholds based on a weighted sum of battery cooling, ageing and derating costs derived by the quantile predictions. The predictive BTMS was analyzed concerning its adaptability to different routes ahead, tunability of cost weights as well as robustness to uncertainty of inputs. A setup with unchanged ageing costs reduced average cooling costs by 9% compared to a fixed threshold strategy in a set of 18 scenarios. Simplifications and limitations were discussed to provide a base for further improvements, for example concerning the limited freedom of cooling threshold choice. In conclusion, the developed framework was able to use QCNN predictions to increase the BTMS energy efficiency while taking ageing and derating effects into account.


Verlagsausgabe §
DOI: 10.5445/IR/1000153254
Veröffentlicht am 01.12.2022
Originalveröffentlichung
DOI: 10.1016/j.treng.2022.100150
Scopus
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2666-691X, 0148-0170
KITopen-ID: 1000153254
Erschienen in Transportation Engineering
Verlag Elsevier B.V.
Band 10
Seiten Art.-Nr.: 100150
Vorab online veröffentlicht am 13.11.2022
Schlagwörter Battery thermal management, Machine learning, Predictive control, Quantile convolutional neural networks
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page