KIT | KIT-Bibliothek | Impressum | Datenschutz

Cone‐equivalent nilpotent groups with different Dehn functions

Llosa Isenrich, Claudio 1; Pallier, Gabriel 1; Tessera, Romain
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

For every $k\geqslant 3$ , we exhibit a simply connected $k$ -nilpotent Lie group $N_k$ whose Dehn function behaves like $n^k$ , while the Dehn function of its associated Carnot graded group $\mathsf {gr}(N_k)$ behaves like $n^{k+1}$ . This property and its consequences allow us to reveal three new phenomena. First, since those groups have uniform lattices, this provides the first examples of pairs of finitely presented groups with bi-Lipschitz asymptotic cones but with different Dehn functions. The second surprising feature of these groups is that for every even integer $k \geqslant 4$ , the centralised Dehn function of $N_k$ behaves like $n^{k-1}$ and so has a different exponent than the Dehn function. This answers a question of Young. Finally, we turn our attention to sublinear bi-Lipschitz equivalences (SBEs). Introduced by Cornulier, these are maps between metric spaces inducing bi-Lipschitz homeomorphisms between their asymptotic cones. These can be seen as weakenings of quasi-isometries where the additive error is replaced by a sublinearly growing function $v$ . We show that a $v$ -SBE between $N_k$ and $\mathsf {gr}(N_k)$ must satisfy $v(n)\succcurlyeq n^{1/(2k + 2)}$ , strengthening the fact that those two groups are not quasi-isometric. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000153278
Veröffentlicht am 02.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0024-6115, 1460-244X
KITopen-ID: 1000153278
Erschienen in Proceedings of the London Mathematical Society
Verlag London Mathematical Society
Band 126
Heft 2
Seiten 704-789
Vorab online veröffentlicht am 20.11.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page