KIT | KIT-Bibliothek | Impressum | Datenschutz

On echo chains in the linearized Boussinesq equations around traveling waves

Zillinger, Christian ORCID iD icon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the 2D Boussinesq equations with viscous but without thermal dissipation and observe that in any neighborhood of Couette flow and hydrostatic balance (with respect to local norms) there are time-dependent traveling wave solutions of the form $\omega=-1+f(t)\cos(x-ty)$, $\theta=\alpha y+g(t)\sin(x-ty)$. As our main result we show that the linearized equations around these waves for $\alpha=0$ exhibit echo chains and norm inflation despite viscous dissipation of the velocity. Furthermore, we construct initial data in a critical Gevrey 3 class, for which temperature and vorticity diverge to infinity in Sobolev regularity as $t to infty$ but for which the velocity still converges.


Volltext §
DOI: 10.5445/IR/1000153504
Veröffentlicht am 07.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000153504
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 63 S.
Serie CRC 1173 Preprint ; 2022/70
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter Boussinesq equations, partial dissipation, resonances, blow-up
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page