KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning in bioprocess development: From promise to practice

Helleckes, Laura M.; Hemmerich, Johannes; Wiechert, Wolfgang; von Lieres, Eric; Grünberger, Alexander ORCID iD icon 1
1 Institut für Bio- und Lebensmitteltechnik (BLT), Karlsruher Institut für Technologie (KIT)

Abstract:

Fostered by novel analytical techniques, digitalization and automation, modern bioprocess development provides high amounts of heterogeneous experimental data, containing valuable process information. In this context, data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces while exploiting experimental facilities most efficiently. The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development, especially in strain engineering and selection, bioprocess optimization, scale-up, monitoring and control of bioprocesses. For each topic, we will highlight successful application cases, current challenges and point out domains that can potentially benefit from technology transfer and further progress in the field of ML.


Volltext §
DOI: 10.5445/IR/1000153884
Veröffentlicht am 15.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000153884
Umfang 42 S.
Vorab online veröffentlicht am 04.10.2022
Schlagwörter machine learning, bioprocess development, process scale-up, process control, process analytical technology, strain selection
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page