KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear Schrödinger Equations with Rough Data

Klaus, Friedrich ORCID iD icon 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

In this thesis we consider nonlinear Schrödinger equations with rough initial data. Roughness of the initial data in nonlinear Schrödinger equations can be understood as being of low regularity and as a lack of decay at infinity.

Firstly we prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index. These a priori estimates are sharp at the level of regularity but are conditional upon small mass. The proof uses the operator determinant characterization of the transmission coefficient introduced by Killip-Visan-Zhang.

Secondly we show global wellposedness for the tooth problem of defocusing nonlinear Schrödinger equations, that is the Cauchy problem with initial data in the space $H^{s_1}(\mathbb{R}) + H^{s_2}(\mathbb{T})$. This result can be seen as an intermediate step between the wellposedness theory in the $L^2(\mathbb{T})$-based setting and more generic non-decaying behavior at infinity. In the case $s_1 = 1$ we obtain an at most exponentially growing energy, based on the Hamiltonian of the perturbed equation. For the cubic nonlinearity we may choose $s_2 > 3/2$ whereas for higher power nonlinearities our assumption is $s_2 > 5/2$.
... mehr


Volltext §
DOI: 10.5445/IR/1000153893
Veröffentlicht am 16.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Hochschulschrift
Publikationsdatum 16.12.2022
Sprache Englisch
Identifikator KITopen-ID: 1000153893
Verlag Karlsruher Institut für Technologie (KIT)
Umfang viii, 143 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Analysis (IANA)
Prüfungsdatum 23.11.2022
Projektinformation SFB 1173, 258734477 (DFG, DFG KOORD, SFB 1173/2 2019)
Schlagwörter Nonlinear Schrödinger Equations, Nonlinear Schrödinger Equation, NLS, Derivative Nonlinear Schrödinger Equation, dNLS, Dispersive Equations, Wellposedness, Modulation Spaces, Almost Conserved Quantities
Referent/Betreuer Kunstmann, Peer Christian
Hundertmark, Dirk
Erdogan, M. Burak
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page