KIT | KIT-Bibliothek | Impressum | Datenschutz

On potential-based shape derivatives of the electromagnetic transmission problem

Arens, Tilo 1; Hagemann, Felix 1; Hettlich, Frank 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Domain derivatives are an important tool to characterize and compute shape derivatives. If some quantity of interest depends on the shape of an object such as the obstacle in a scattering problem, shape derivatives are used to describe the effect of variations of the shape on that quantity. We here consider the scattering of time-harmonic electromagnetic waves by a penetrable obstacle. As an alternative to the formulation using the Maxwell system, the problem may be posed as a coupled system of Helmholtz equations with complicated transmission conditions. We prove equivalence of the two formulations and then proceed to characterize the domain derivatives of the scattered fields in the potential formulation. Our main result is the equivalence of the characterizations of such derivatives in the Maxwell and in the potential based problem formulation.


Volltext §
DOI: 10.5445/IR/1000154080
Veröffentlicht am 22.12.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 16.12.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000154080
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2022/75
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter Maxwell’s equations, domain derivative for penetrable scatterer, potential formulation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page