KIT | KIT-Bibliothek | Impressum | Datenschutz

Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects

Haitz, Dennis 1; Hübner, Patrick 1; Ulrich, Markus ORCID iD icon 1; Landgraf, Steven 1; Jutzi, Boris ORCID iD icon 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In this research, we investigate possibilities to train convolutional neural networks with a small dataset for semantic segmentation, while achieving the best possible model generalization. In particular, we want to segment corrosion on the surface of industrial objects. In order to achieve model generalization, we utilize a selection of established and advanced strategies, i.e. Self-Supervised-Learning. Besides radiometric- and geometric-based data augmentation, we focus on model complexity regarding encoder and decoder, as well as optimal pretraining. Finally, we evaluate the best performing model against a pixel-wise random forest classification. As a result, we achieve an f1-score of 0.79 for the best performing model regarding the segmentation of corrosion.


Verlagsausgabe §
DOI: 10.5445/IR/1000154095
Veröffentlicht am 26.11.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1237-0
KITopen-ID: 1000154095
Erschienen in Forum Bildverarbeitung 2022. Ed.: T. Längle; M. Heizmann
Verlag KIT Scientific Publishing
Seiten 73-85
Schlagwörter Semantic segmentation, classification, machine vision, surface inspection, corrosion detection, quality assurance
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page