KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-stage Inspection of Laser Welding Defects using Machine Learning

Dold, P. M.; Bleier, F.; Boley, M.; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

As welding processes become faster and components consist of many more welds compared to previous applications, there is a need for fast but still precise quality inspection. The aim of this paper is to compare already existing approaches, namely single-sensor systems (SSS) and multi-sensor systems (MSS) with a proposed cascaded system (CS). The introduced CS is characterized by the fact that not all available data are analyzed, but only cleverly selected ones. The different approaches consisting of neural networks are compared in terms of their accuracy and computational effort. The data are recorded from scratch and include two common sensor systems for quality control, namely a photodiode (PD) and a high-speed camera (HSC). As a result, when the CS makes half of the final decisions based on a SSS with PD signals and the other half based on a SSS with HSC images, the estimated computational effort is reduced by almost 50% compared to the SSS with HSC images as input. At the same time, the accuracy decreases only by 0.25% to 95.96%. Additionally, based on the CS, a general cascaded system (GCS) for quality inspection is proposed.


Verlagsausgabe §
DOI: 10.5445/IR/1000154154
Veröffentlicht am 04.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1239-4
KITopen-ID: 1000154154
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Proceedings - 32. Workshop Computational Intelligence: Berlin, 1. - 2. Dezember 2022. Hrsg.: H. Schulte; F. Hoffmann; R. Mikut
Veranstaltung 32. Workshop Computational Intelligence (2022), Berlin, Deutschland, 01.12.2022 – 02.12.2022
Verlag KIT Scientific Publishing
Seiten 31-52
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page