KIT | KIT-Bibliothek | Impressum | Datenschutz

EasyMLServe: Easy Deployment of REST Machine Learning Services

Neumann, Oliver 1; Schilling, Marcel ORCID iD icon 1; Reischl, Markus ORCID iD icon 1; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Various research domains use machine learning approaches because they can solve complex tasks by learning from data. Deploying machine learning models, however, is not trivial and developers have to implement complete solutions which are often installed locally and include Graphical User Interfaces (GUIs). Distributing software to various users on-site has several problems. Therefore, we propose a concept to deploy software in the cloud. There are several frameworks available based on Representational State Transfer (REST) which can be used to implement cloud-based machine learning services. However, machine learning services for scientific users have special requirements that state-of-the-art REST frameworks do not cover completely. We contribute an EasyMLServe software framework to deploy machine learning services in the cloud using REST interfaces and generic local or web-based GUIs. Furthermore, we apply our framework on two real-world applications, i. e., energy time-series forecasting and cell instance segmentation. The EasyMLServe framework and the use cases are available on GitHub.


Verlagsausgabe §
DOI: 10.5445/IR/1000154156
Veröffentlicht am 04.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1239-4
KITopen-ID: 1000154156
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Proceedings - 32. Workshop Computational Intelligence: Berlin, 1. - 2. Dezember 2022. Hrsg.: H. Schulte; F. Hoffmann; R. Mikut
Veranstaltung 32. Workshop Computational Intelligence (2022), Berlin, Deutschland, 01.12.2022 – 02.12.2022
Verlag KIT Scientific Publishing
Seiten 11-30
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page