KIT | KIT-Bibliothek | Impressum | Datenschutz

Global existence and decay of small solutions in a viscous half Klein–Gordon equation

Garénaux, Louis ORCID iD icon 1; Rijk, Björn de 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We establish global existence and decay of solutions of a viscous half Klein-Gordon equation with a quadratic nonlinearity considering initial data, whose Fourier transform is small in $L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Our analysis relies on the observation that nonresonant dispersive effects yield a transformation of the quadratic nonlinearity into a subcritical nonlocal quartic one, which can be controlled by the linear diffusive dynamics through a standard $L^1$-$L^{\infty}$-argument. This transformation can be realized by applying the normal form method of Shatah or, equivalently, through integration by parts in time in the associated Duhamel formula.


Volltext §
DOI: 10.5445/IR/1000154176
Veröffentlicht am 02.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000154176
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 17 S.
Serie CRC 1173 Preprint ; 2022/80
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Viscous Klein-Gordon equation, global existence, diffusive decay, normal form method, space-time resonances method
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page