KIT | KIT-Bibliothek | Impressum | Datenschutz

Transcending the Rayleigh Hypothesis with multipolar sources distributed across the topological skeleton of a scatterer

Lamprianidis, Aristeidis G. ORCID iD icon 1; Rockstuhl, Carsten ORCID iD icon 1,2; Fernandez-Corbaton, Ivan ORCID iD icon 2
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

There is an ever-growing need to study the optical response of complex photonic systems involving multi-scattering phenomena with strong near-field interactions. Since fully numerical methods often imply high computational costs, semi-analytical methods are preferred. However, most semi-analytical methods are commonly plagued by what is known as the problem of the Rayleigh Hypothesis: they typically use analytical representations of the scattered fields that are invalid in the near-field region of the scatterer. In this work, we present an alternative representation scheme for the scattered fields based on a distribution of multipolar sources across the topological skeleton of the scatterer. We demonstrate how such a representation overcomes the problem of the Rayleigh Hypothesis for scatterers of arbitrary geometry. In that regard, our work enriches the available toolkit of semi-analytical methods in light-scattering by pushing decisively against one of the fundamental limitations of the existing methods.


Verlagsausgabe §
DOI: 10.5445/IR/1000154194
Veröffentlicht am 02.01.2023
Originalveröffentlichung
DOI: 10.1016/j.jqsrt.2022.108455
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Festkörperphysik (TFP)
Karlsruhe School of Optics & Photonics (KSOP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2023
Sprache Englisch
Identifikator ISSN: 0022-4073
KITopen-ID: 1000154194
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Journal of Quantitative Spectroscopy and Radiative Transfer
Verlag Elsevier
Band 296
Seiten 108455
Vorab online veröffentlicht am 08.12.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page