KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of second-order locally implicit and local time-stepping methods for discontinuous Galerkin discretizations of linear wave equations

Carle, Constantin 1; Hochbruck, Marlis 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong CFL condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time.

Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000154254
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2023/2
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter time integration, wave equation, leapfrog method, discontinuous Galerkin method, error analysis, CFL condition, Chebyshev polynomials, local time-stepping, locally implicit
Relationen in KITopen

Volltext §
DOI: 10.5445/IR/1000154254
Veröffentlicht am 24.01.2023
Seitenaufrufe: 131
seit 06.01.2023
Downloads: 93
seit 30.01.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page