KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of second-order locally implicit and local time-stepping methods for discontinuous Galerkin discretizations of linear wave equations

Carle, Constantin 1; Hochbruck, Marlis 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper is dedicated to the full discretization of linear wave equations, where the space discretization is carried out with a discontinuous Galerkin method on spatial meshes which are locally refined or have a large wave speed on only a small part of the mesh. Such small local structures lead to a strong CFL condition in explicit time integration schemes causing a severe loss in efficiency. For these problems, various local time-stepping schemes have been proposed in the literature in the last years and have been shown to be very efficient. Here, we construct a quite general class of local time integration methods containing local time-stepping and locally implicit methods as special cases. For these two variants we prove stability and optimal convergence rates in space and time.


Volltext §
DOI: 10.5445/IR/1000154254
Veröffentlicht am 24.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000154254
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2023/2
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Abstract/Volltext
Schlagwörter time integration, wave equation, leapfrog method, discontinuous Galerkin method, error analysis, CFL condition, Chebyshev polynomials, local time-stepping, locally implicit
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page