KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of the implicit Euler scheme for the Maxwell–Kerr system

Schnaubelt, Roland 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We establish first-order convergence of the implicit Euler scheme for the quasilinear Maxwell equations with Kerr-type material laws. We only impose regularity assumption which are in accordance with the newly established wellposed theory for the PDE system. In recent literure CFL conditions had to be imposed on full discretizations of this system even for implicit time integration schemes. In our results on the semi- discretization, the time step size is only restricted by the $\mathcal{H}^3$-norm $r_0$ of the initial fields, and the solutions of the scheme are bounded by $c(r_0)$. We thus expect to obtain full discretization results without CFL condition in future work. The estimates are shown by an intricate iterative procedure inspired by the methods used in the wellposedness theory of the PDE.


Volltext §
DOI: 10.5445/IR/1000154285
Veröffentlicht am 09.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000154285
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2023/3
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Quasilinear Maxwell system, Kerr nonlinearity, implicit Euler scheme, wellposedness, error analysis, time integration
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page