KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimal human labelling for anomaly detection in industrial inspection

Zander, Tim 1; Ziyan, Pan; Birnstill, Pascal; Beyerer, Jürgen
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Anomaly detection with machine learning in industrial inspection systems for manufactured products relies on labelleddata. This rises the question how the labelling by humans should be conducted. We consider the case where we want to optimise the cost of the combined inspection process done by humans and
an algorithm. This also influences the combined performance of the trained model as well as the knowledge of the performance of this model. We focus on so called one-class classification problem models which produce a continuous outlier score. We establish some cost model for human and machine combined inspection of samples. We then discuss in this cost model how to select two optimal boundaries of the outlier score where in between these two boundaries human inspection takes place. We also frame this established knowledge into an applicable algorithm.


Verlagsausgabe §
DOI: 10.5445/IR/1000154367
Veröffentlicht am 17.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1237-0
KITopen-ID: 1000154367
HGF-Programm 46.23.04 (POF IV, LK 01) Engineering Security for Production Systems
Erschienen in Forum Bildverarbeitung 2022. Ed.: T. Längle
Veranstaltung Forum Bildverarbeitung (2022), Karlsruhe, Deutschland, 24.11.2022 – 25.11.2022
Verlag KIT Scientific Publishing
Seiten 49-59
Projektinformation KASTEL I (BMBF, 01BY1172 / 16BY1172)
Schlagwörter Mathematical methods and models, artificial intelligence and machine learning, quality control
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page