KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-driven extraction and analysis of repairable fault trees from time series data

Niloofar, Parisa ; Lazarova-Molnar, Sanja ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Fault tree analysis is a probability-based technique for estimating the risk of an undesired top event, typically a system failure. Traditionally, building a fault tree requires involvement of knowledgeable experts from different fields, relevant for the system under study. Nowadays’ systems, however, integrate numerous Internet of Things (IoT) devices and are able to generate large amounts of data that can be utilized to extract fault trees that reflect the true fault-related behavior of the corresponding systems. This is especially relevant as systems typically change their behaviors during their lifetimes, rendering initial fault trees obsolete. For this reason, we are interested in extracting fault trees from data that is generated from systems during their lifetimes. We present DDFTAnb algorithm for learning fault trees of systems using time series data from observed faults, enhanced with Naïve Bayes classifiers for estimating the future fault-related behavior of the system for unobserved combinations of basic events, where the state of the top event is unknown. Our proposed algorithm extracts repairable fault trees from multinomial time series data, classifies the top event for the unseen combinations of basic events, and then uses proxel-based simulation to estimate the system’s reliability. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000154466
Veröffentlicht am 13.01.2023
Originalveröffentlichung
DOI: 10.1016/j.eswa.2022.119345
Scopus
Zitationen: 9
Web of Science
Zitationen: 5
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.04.2023
Sprache Englisch
Identifikator ISSN: 0957-4174, 1873-6793
KITopen-ID: 1000154466
Erschienen in Expert Systems with Applications
Verlag Elsevier
Band 215
Seiten Art.-Nr.: 119345
Vorab online veröffentlicht am 26.11.2022
Schlagwörter Classification, Data-driven simulation, Fault tree analysis, Multi-state system, Proxel-based simulation, Reliability analysis
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page