KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine learning based multiobject tracking for sensor based sorting

Maier, Georg; Reith-Braun, Marcel; Bauer, Albert; Gruna, Robin; Pfaff, Florian ORCID iD icon 1; Kruggel-Emden, Harald; Längle, Thomas; Hanebeck, Uwe D.; Beyerer, Jürgen
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Sensor-based sorting provides state-of-the-art solutions for sorting of granular materials. Current systems useline-scanning sensors, which yields a single observation of each object only and no information about their movement. Recent works show that using an area-scan camera bears the potential to decrease both the error in characterization and separation. Using a multiobject tracking system, this enables an estimate of the followed paths as well as the parametrization of an individual motion model per object. While previous works focus on physically-motivated motion models, it has been shown that state-of-the-art machine learning methods achieve an increased
prediction accuracy. In this paper, we present the development of a neural network-based multiobject tracking system and its integration into a laboratory-scale sorting system. Preliminary results show that the novel system achieves results comparable to a highly optimized Kalman filter-based one. A benefit lies in avoiding tiresome manual tuning of parameters of the motion model, as the novel approach allows learning its parameters by provided examples due to its data-driven nature.


Verlagsausgabe §
DOI: 10.5445/IR/1000154620
Veröffentlicht am 19.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator ISBN: 978-3-7315-1237-0
KITopen-ID: 1000154620
Erschienen in Forum Bildverarbeitung 2022. Ed.: T. Längle
Veranstaltung Forum Bildverarbeitung (2022), Karlsruhe, Deutschland, 24.11.2022 – 25.11.2022
Verlag KIT Scientific Publishing
Seiten 115-126
Schlagwörter Sensor-based sorting, machine learning, visual inspection, multiobject tracking
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page