KIT | KIT-Bibliothek | Impressum | Datenschutz

Space-Time Discontinuous Galerkin Methods for Weak Solutions of Hyperbolic Linear Symmetric Friedrichs Systems

Corallo, Daniele 1; Dörfler, Willy ORCID iD icon 1; Wieners, Christian 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We study weak solutions and its approximation of hyperbolic linear symmetric Friedrichs systems describing acoustic, elastic, or electro-magnetic waves. For the corresponding first-order systems we construct discontinuous Galerkin discretizations in space and time with full upwind, and we show primal and dual consistency. Stability and convergence estimates are provided with respect to a mesh-dependent DG norm which includes the L$_2$ norm at final time. Numerical experiments confirm that the a priori results are of optimal order also for solutions with low regularity, and we show that the error in the DG norm can be closely approximated with a residual-type error indicator.


Verlagsausgabe §
DOI: 10.5445/IR/1000154686
Veröffentlicht am 17.01.2023
Originalveröffentlichung
DOI: 10.1007/s10915-022-02076-3
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2023
Sprache Englisch
Identifikator ISSN: 0885-7474, 1573-7691
KITopen-ID: 1000154686
Erschienen in Journal of Scientific Computing
Verlag Springer
Band 94
Heft 1
Seiten Art.-Nr.: 27
Vorab online veröffentlicht am 29.12.2022
Schlagwörter Weak solution of linear symmetric Friedrichs systems, Discontinuous Galerkin methods in space and time, Error estimators for first-order systems
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page